A Lightweight Configurable Signal Analysis
Toolset for Multiple Applications

Christoph Lauer, Norbert Reithinger
German Research Center for Artificial Intelligence GmbH
Stuhlsatzenhausweg 3
D-66123 Saarbriicken, Germany
{clauer,bert}@dfki.de

ABSTRACT

In this paper we describe a lightweight and highly
configurable toolset for the analysis of sound files. While
there exist numerous solutions we needed a system that is
modular, expandable, that runs on various platforms and
operating systems, and that can be embedded in other
programs. Using Java and its rich library of signal
handling and data visualization components,
SONOGRAM provides us with the flexibility needed for
various projects in the area of data annotation,
visualization, and multi-modal interface implementation.
Currently, seven signal analysis and visualization
algorithms are implemented. Adding new algorithms is
straightforward, and advanced visualizations like three-
dimensional perspectograms can be quickly implemented.

1. INTRODUCTION

For various applications and settings, it is favorable to
have a visualization of the speech signal at hand. There are
various free and commercial systems available that
provide elaborate analyzing capabilities. In our year —long
research in intelligent user-interfaces, however, we
especially felt the need for a visualization tool that
provides the following features to view various aspects of
a speech signal

* FEasy integration in various applications on

various platforms
* Rich visualization options for the speech signal
* Easy extensibility to add new analysis modules

The current available speech analyze toolsets like Praat
from the University of Amsterdam [1] or SpeechStation
from Sensimetrics (http:/www.sens.com/) lack the plug-in
ability for environments like dialogue systems or
annotations programs, or they are limited to a certain
platform.

In this paper we present SONOGRAM, a Java application
that fulfils our needs. Initially it was incorporated in
multimedia annotation tools like ANVIL [4] or the NITE
(http:/nite.nis.sdu.dk/y NXT workbench. Further
applications are in multimodal dialogues systems like

SmartKom (http://www.smartkom.org/) or Miamm
(http://www.miamm.org/)
ESunuuramM demoC.wav ifssiianiinnnnninnianniin i el B

File Options Signal Help

a8« m/mele

walLlclwmio e e

i

Figure 1: The SONOGRAM visible speech main
window

2. THE ARCHITECTURE

In figure 2, the general architecture of SONOGRAM is
shown. The central control module gets input either from
a file interface or through the plug-in interface from the
embedding program. Since SONOGRAM is written in
Java it is able to process all media types that are
accessible through the Java media framework.



imERDmwERT-
i
L]

WwED

e 4

Figure 2: The Architecture

The processing and transformations take place in the
transformation module. It is a collection of Java classes
that provide currently seven signal transformation
algorithms (see below). The results are visualized in two
different types of windows. Figure 1 shows
SONOGRAM’s main window. It displays the frequency
view of the signal, the waveform, and, to the right, the
energy for the transformation window the cursor is
currently pointing at. Below the frequency display you
can select an interval of the signal to zoom into.

Besides the main window, for each special signal analysis
algorithm, the results are displayed in separate windows;
In figure 3 all currently implemented 7 analysis
algorithms display the respective characteristics of the
signal.

In addition to the basic controls on top like, e.g. playing
the signal, the user has access to numerous parameters of
the basic processing algorithms, and to control the
display. Figure 4 shows the general adjustment dialogue
of SONOGRAM for the LPC transformation, where basic
properties like LPC coefficients can be adjusted. Of
course, every algorithm parameter change immediately
initiates a new determination of the signal characteristic
presentation and is immediately visible.

The transformation layer uses the object-oriented features
of Java. The architecture of the algorithm API allows a
fast implementation of additional algorithms that are not
implemented yet. All algorithms are children classes of
the SonogramAlgorithm abstract interface class definition.
They exchange the time and frequency domain based
signal vectors using access functions.

Figure 3: Sonogram with the analysis windows

The Perspectogram generation (see below) is based on the
Java3D library that is fully supported on the most
hardware platforms. The media file parser is based on the
Java Media Framework (JMF) and supports the most
common audio and video file formats.

ol - |

If General | [ Overlapping | EjiSurfaceplot | [E FFT

8 General Options for Sonogram

[T] windowlength ] L Windowfunktions ] L] Colors

= Logarithm Frequency & Gain ¥ wavelet
@ FFTPitch | L/ Logarithm Amplitude

(8] Autocorrelation ] ] Waveform ] o< Transformation

; [@ Autocorrelation Eased Pitch
Previous Samples LPC Coefficents

) ) I . )

0 10002000300040005000 0 10 20 30 40 50 60

& Cepstrum ]

FFT length for LPC Frequency Division

& o

128 256 512 102420484096 1/8 1/4 1/2 171

General LPC Settings Selected Yalues

[_] Logarithm Amplitude Previous Samples; 500

LPC Coefficients: 20

|v| Search Formats

ReOpen | ReCalculate ‘ ReDraw ‘ Close

Figure 4: The General Adjustment Dialog

If SONOGRAM is used as a plug-in, the parent
application talks with SONOGRAM via the Java Native
Interface. The parent application sends the signal, timing
information, and, if necessary, transformation parameters.
The control module of SONOGRAM will then generate
the spectrogram and display the selected information.



The toolset can be accessed from any platform where Java
is available. The communication interface to other
programming languages is realized with the Java Native
Interface, which has a well-defined API to control the
modules.

Java has a reputation of not being fast enough for time-
critical applications. While this is partly true, the
processing speed of SONOGRAM is good enough for
most purposes. The signal-duration to processing-time
ratio is approximately 1 on a 1 GHz PC running Linux.

3. ALGORITHM COLLECTION

Currently, we have implemented the following seven
signal transformation algorithms, using the SONOGRAM
transformation API:

*  Fast Fourier Transformation: We use the standard
Raidx-2 FFT algorithm [5] [2]. The Radix-2
algorithm requires an input sample vector with
the length of exactly a power of two which is the
window length. The window length of the
transformation can be configured in the settings
dialog.

* Linear Predictive Coding: The implementation is
based on a polynomial interpolation and can be
scaled by four parameters [5]:

o The number of samples for the

prediction;

o The degree of the polynomial for the
interpolation;

o The power of 2 for the final fourier
transformation;

o The frequency division representation.

*  Autocorrelation: The autocorrelation algorithm is
based on the autocorrelation described in [8]. The
wavelength of the smoothed autocorrelation
periods is used for the estimation of the first
formant frequency similar to the pitch detection
implementation.

*  Cepstrum: For the cepstrum analysis we use the
default definition for the cepstrum as the inverse
of the logarithmic Fourier spectrum of the time
domain based signal. The maximum of the
quefrenz the cepstrum transformation computes is
similar to the wavelength of the pitch. However
the autocorrelation based pitch estimation
delivers a steadier formant tracking as the
cepstrum transformation algorithm. The window
length of this algorithm part is adjustable in the
settings dialog.

e Pitch Detection: We use the autocorrelation
algorithm based pitch estimation which
calculates the FO progression over time for the
parameterized window length and sum loop
length. Apart from the autocorrelation, the pitch

can be extracted from the maximal frequency the
FFT computes.

*  Wavelet: The orthogonal wavelet transformation
algorithm is based on the standard pyramid
algorithm described in the numerical recipes [5].
The window length of the wavelet transformation
correlates with the selected number of octaves
adjusted for the transformation. Available filter
coefficients are Daubechies (in degree 2 (Haar
Wavelet),4, 6, 8, 10, 12, 14, 16, 18, 20),
Vaidynathan (in degree 24), Coifman (in degree
12, 18, 24, 30), and Beylkin (in degree 18). For
more detailed information of the wavelet
transformation see [6] and [7].

Technically, the algorithms realize the abstract class
interface definition of the transformation API, which
allows the fast additional implementation of algorithms.
The visualization of the transformations results needs
more programming. However using the visualization
components of the already implemented algorithms this
requires usually no completely new development, but
only an adaptation to the requirements of the new
algorithm.

4. THREE-DIMENSIONAL PERSPECTOGRAM

The power of the approach we used, namely using the
component architecture and exploiting the full power of
Java shows in the implementation of the three-
dimensional Perspectogram. The Perspectogram shows the
2D spectrogram displayed in the main window as three-
dimensional surface plot similar to the classical waterfall
plot. The z-axis displays the energy distribution for the
frequencies at a certain time point in the signal. The
experimenter thus has a direct view of the signal’s
characteristics. Additionally, he is able to scale the
position, zoom in and out and to change the viewpoint
using the mouse. Again, the dimensions and parameters
of the Perspectogram are adjustable in the options dialog.

The implementation is a straightforward extension of the
sonogram shown in the main application window in the
three dimensional room. The Perspectogram can be
grasped with the mouse and observed from all directions



5 Surfaceplot

Figure 5: The Perspectogram

6. SUMMARY AND OUTLOOK

We presented SONOGRAM, a flexible toolkit to visualize
the features of a signal. It is based on a modular
architecture, implemented in JAVA. This enabled us to
implement straightforwardly several signal transformation
algorithms and to display the results user friendly. The
decision to use JAVA as implementation platform was
correct for our needs. It provides a rich, cross-platform
collection of data import and visualization tools.
Additionally, exploiting the object-oriented approach, the
implementation of new algorithms is reasonably fast. The
only drawback is the processing time, which is currently
sufficient for most applications we use SONOGRAM for.
In the future, even more efficient Java compilers and run-
time systems will close the gap to, e.g., C-based
programs

Future extensions to SONOGRAM will be Jitter and
Shimmer algorithms for the microstructural analysis of
the time and the frequency domain as well as additional
pitch analysis algorithms like cross correlation. Another
useful feature will be the animated real times analysis of
streaming media.

7. ACKNOWLEDGEMENTS

The research described in this paper was partly funded by
the European Union within the IST project NITE (Natural

Interactivity Tools Engineering, IST-2000-26095). The
responsibility for the contents lies with the authors.

8. REFERENCES

[1] Boersma Paul, Weenink David, Praat, a System for doing
Phonetics by Computer, version 3.4. Institute of Phonetic
Sciences of the University of Amsterdam. 1995

[2] Brigham, E. Oren, The Fast Fourier Transform and Its
Applications, Prentice-Hall PTR, Englewood Cliffs, 1988

[3] Jurafsky Daniel, H. Martin James, Speech and Language
Processing, An Introduction to Natural Language
Processing, Computeronal Linguistics, and Speech
Recognition, Prentice Hall PTR, Englewood Cliffs, 2000

[4] Kipp Michael, Anvil - A Generic Annotation Tool for
Multimodal Dialogue, Proceedings of Eurospeech, Aalborg
2001

[6] Lauer Christoph, Student research project -
Signalanalyse mit Wavelets, Hochschule fiir Technik und
Wirtschaft des Saarlandes, Saarbriicken, 2000

[7] Lauer Christoph, Harald Wern , Diploma Thesis -
Akustische Datenkompression mit Wavelets im Vergleich zur
klassischen Fouriertransformation, Hochschule fiir Technik
und Wirtschaft des Saarlandes, Saarbriicken, 2001

[8] Press William H., Teulosky Saul A., Vettering William T.,
Flannery Brian P., Numerical Recipes in C, The Art of
Scientific Computing, Second Edition, Cambridge University
Press, Cambridge ,1992

[9] Roads Curtis, with John Strawn, Curtis Abbott, John
Gordon, and Philip Greenspum, The computer musics
tutorial, MIT Press, Cambridge Massachusetts, 1996.

[10] Schukat-Talamazzini Ernst Giinther, Automatische
Spracherkennung,  Statistische Verfahren  der
Musteranalyse, Vieweg Verlag, Braunschweig ,1995

[8] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, Spoken
Language Processing: A Guide to Theory, Algorithm and
System Development, Prentice Hall PTR, Englewood
Cliffs,2001



